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An improvement to kernel principal component analysis (KPCA) to
produce computationally efficient KPCA-based feature extraction is
proposed. This improvement is applicable to all cases no matter
whether the samples in the feature space have zero mean or not.
Experiments on several benchmark datasets show that the improvement
performs well in classification problems.

Introduction: Kernel principal component analysis (KPCA) has been
widely used as a transform method for classification problems. When
KPCA extracts features from a sample, it should calculate as many
kernel functions as there are total training samples in advance [1]. As
a result, the larger the size of the training sample set, the lower the com-
putational efficiency of feature extraction. Indeed, this is a common
problem of most kernel methods [2–5]. To produce computationally
efficient kernel-methods-based feature extraction procedures, some
improvements to kernel methods have been proposed. Among these
improvements, the methods in [1, 3, 4] try their best to comply with
the nature of the kernel methods when improving the naı̈ve kernel
methods. These methods obtain satisfactory improvement in compu-
tational efficiency. On the other hand, we also note that, when the
method in [1] improves KPCA, it is assumed that the sample data in
the feature space has zero mean, which is not so in actual situations. In
this Letter, we propose an improvement to KPCA. This improvement is
more suitable for real-world data. Indeed, it is applicable to all cases no
matter whether the samples in the feature space have zero mean or not.

Method: KPCA is equivalent to a PCA method implemented in the
feature space induced by the kernel trick [1]. We know that the eigen-
equation of non-centred KPCA (referred to as naı̈ve KPCA 1) is as
follows:

Ka = la (1)

where the elements of matrix K are defined as follows: (K )ij ¼ k(xi, xj),
i,j ¼ 1,2, . . .,N, k(xi, xj) is the kernel function of xi and xj. The term ‘non-
centred KPCA’ indeed implies that (1) is obtained under the condition
that the samples of the feature space have zero mean. In other words,
we can derive (1) from the covariance matrix of the samples of the
feature space only if the samples of the feature space have zero mean.
However, it is likely that, in real-world applications, the above condition
is not satisfied.

We also know that the eigen-equation of centred KPCA (referred to as
naı̈ve KPCA 2) is as follows:

K ′a = la (2)

where K′ ¼ K 2 LK 2 KL + LKL. L is an N × N matrix the elements of
which are all 1/N. The term ‘centred KPCA’ means that (2) is obtained
without the zero mean assumption as shown above. In other words, K′ in
(2) is directly derived from the original definition of the covariance
matrix of the samples of the feature space. As a result, naı̈ve KPCA 2
can be applicable to all cases no matter whether the samples in the
feature space have zero mean or not.

In this Letter, we modify naı̈ve KPCA 2 to produce computationally
efficient KPCA-based feature extraction. We refer to our improvement to
KPCA proposed in this Letter as improvement to naı̈ve KPCA
2. Compared with the improvement to KPCA described in [1], improve-
ment to naı̈ve KPCA 2 has wider applicability.

As shown in [1], we also assume that the eigenvector of the covari-
ance of the samples of the feature space can be expressed by a certain
linear combination of x1

0,x2
0, . . ., xs

0, a subset of the training sample set.
x1

0,x2
0, . . ., xs

0 are referred to as ‘nodes’. The eigen-equation of improvement
to naı̈ve KPCA 2 is as follows:

Koa = lK2a (3)

where Ko =K1KT
1 −L1K1KT

1 −K1KT
1 L1 +L1K1KT

1 L1, (K2)ij =k(x0
i ,x0

j ),
i,j ¼ 1,2, . . .,s. (K1)mn = k(x0

m,xn), m ¼ 1,2, . . .,s, j ¼ 1,2, . . .,n. L is an s
× s matrix the elements of which are all 1/s. Actually, we adopt a
method similar to the method of reformulating KPCA in [1] to
obtain (3).
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We determine x0
1, x0

2, . . ., x0
s using the following procedure:

Step 1. Determine the first node
We take all the training samples as candidates to the first node.

We assess all the candidates, respectively. When we assess the ith
training sample x, we first calculate K1,K2, l using
K1 = k(xi, x1) k(xi, x2) . . . k(xi, xN )

[ ]
, K2 = [k(xi, xi)] and

l = Ko/K2, respectively. We take the candidate that has the
maximum l as the first node and denote it by x0

1. Then, the matrices
K1,K2 corresponding to x0

1 are recorded as K0
1 ,K0

2 , i.e.
K0

1 = [ k(x0
1, x1) k(x0

1, x2) . . . k(x0
1, xN ) ], K0

2 = [k(x0
1, x0

1)].
Step l. Determine the lth node

If l 2 1 nodes, x0
1, x0

2, . . . , x0
l−1, have been determined by the previous

l − 1 steps, we determine the lth node as follows. First, a vector kp
1 is

defined as

k1
p = [k(xp, x1), k(xp, x2), . . . , k(xp, xN )] (4)

Let K0
1 ,K0

2 respectively represent the matrices K1,K2 based on
x0

1, x0
2, . . . , x0

l−1, i.e. (K0
1 )ij = k(x0

i , xj), i = 1, 2, . . . , l − 1, j = 1,
2, . . . ,N ; (K0

2 )ij = k(x0
i , x0

j ), i, j,= 1, 2, . . . , l − 1. The lth node
should be from the sample set P = {x1, x2, ..., xN } − {x0

1, x0
2, . . . , x0

l−1},
which is a subset of the set of the total training samples. In this step,
we will take each element of P as one candidate to the lth node and
respectively assess them and then select the optimal candidate as the
lth node. When assessing one sample (i.e. one element) xp from P, we

define K1,K2 as K1 = K0
1

k1
p

[ ]
, K2 =

K0
2 (k2

p )T

k2
p k(xp, xp)

[ ]
, where k1

p is

defined as in (4), k2
p = [ k(xp, x0

1) k(xp, x0
2) . . . k(xp x0

l−1)]. Using the
K1,K2, we construct an eigenvalue equation in the form of (3), and
then we calculate its eigenvalues l1, l2, . . . , ll . Suppose that m eigen-
vectors of (3) are required. We introduce a variable v and define it as
follows: when l ≤ m, let v = l1 + l2 + . . .+ ll ; otherwise, let
v = l1 + l2 + . . .+ lm. After we analyse all the elements in P using
the above procedure, we denote the maximum v by vl. Then, we select
the candidate associated with vl, as the lth node and represent it by x0

l .
We do not terminate the above procedure until s reaches a predefined
value, where s is the number of the determined nodes.

Improvement to naı̈ve KPCA 2 extracts features from sample
x using the following equation: f = [

∑s
j=1 a

(1)
j k(x0

j , x)/			
l1

√ ∑s
j=1 a

(2)
j k(x0

j , x)/
			
l2

√
. . .

∑s
j=1 a

(m)
j k(x0

j , x)/
			
lm

√
]T , where

a(i) = [a(i)
1 a(i)

2 . . . a(i)
s ]T . a(1),a(2), . . . ,a(m) are the m eigen-

vectors corresponding to the first m largest eigenvalues l1, l2, . . . , lm

of (3), which is constructed on the basis of the determined nodes
x0

1, x0
2, . . . , x0

s and all the training samples x1, x2, . . . , xN . It is clear
that the computational complexities of our method-based feature extrac-
tion and naı̈ve-KPCA-based feature extraction are o(ms) and o(mN ),
respectively.

Results: We have conducted experiments on benchmark datasets [1] to
test different KPCA methods. Each dataset consists of 100 training
subsets and 100 testing subsets. We used the Gaussian kernel function
k(x, y) = exp(−‖x − y‖2/2s2). For every dataset, s2 was set to the
square of the Frobenius norm of the covariance matrix of the samples
in the first training subset. We took the first training subset as the training
set, and took all the testing subsets as the testing sets. We used the
nearest neighbour classifier to classify the testing sets.

Tables 1, 2, 3 and 4 show the means of the classification error rates on
the datasets ‘breast-cancer’, ‘diabetes’, ‘heart’ and ‘thyroid’, respect-
ively. From these Tables, we see that improvement to naı̈ve KPCA 2
is able to obtain a lower classification error rate than IKPCA, i.e. the
improved KPCA method in [1].

Table 1: Classification error rates of different KPCA methods on
dataset ‘breast-cancer’

Methods Naı̈ve KPCA 1 Naı̈ve KPCA 2
IKPCA
(s ¼ 60)

Improvement to naı̈ve
KPCA 2 (s ¼ 60)

m ¼ 20 9.8182 10.169 9.8442 8.6364

Table 2: Classification error rates of different KPCA methods on
dataset ‘diabetes’

Methods Naı̈ve KPCA 1 Naı̈ve KPCA 2
IKPCA

(s ¼ 117)
Improvement to naïve

KPCA 2 (s ¼ 117)

m ¼ 20 11.707 11.873 11.85 11.633
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Table 3: Classification error rates of different KPCA methods on
dataset ‘heart’

Methods Naı̈ve KPCA 1 Naı̈ve KPCA 2
IKPCA
(s ¼ 76)

Improvement to naïve
KPCA 2 (s ¼ 76)

m ¼ 20 7.35 7.35 8.08 7.77

Table 4: Classification error rates of different KPCA methods on
dataset ‘thyroid’

Methods Naı̈ve KPCA 1 Naı̈ve KPCA 2
IKPCA
(s ¼ 77)

Improvement to naïve
KPCA 2 (s ¼ 77)

m ¼ 20 0.98667 0.98667 1.8133 1.8133

Conclusions: Since naı̈ve KPCA 2 is more applicable than naı̈ve KPCA
1, it is probable that the improvement to naı̈ve KPCA 2, proposed in this
Letter, is theoretically also more applicable than the improved KPCA in
[1]. Improvement to naı̈ve KPCA 2 not only extracts features much more
computationally efficient than naı̈ve KPCA, but also classifies very
accurately.
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